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Pseudopotential band calculations along a symmetry axis: 
central potential 
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Naval Surface Warfm Center, Silver Spring, MO 20903-5000, USA 

Received 26 May 1993, in final form 22 November 1993 

Abstract. A method for band-structure calculations along a symmetry axis is inwoduced. It 
entails a cylindrical-coordinate multipole expansion of the wavefunction and an exact reduction 
of the 3D Schrbdinger equation into a set of I D  wave equations for the multipoles. Group- 
theoretic considerations and energy xgumenu imply good convergence, regardless of the unit- 
cell extension along the symmetry direction. Calculations af a test case, the band structure 
of PbSr along lhe [ I l l ]  direction without spin-xbit coupling, demonstrate the method’s good 
convergence. The method is expected to be particularly useful for structum highly anisotropic 
along a symmetry axis. e.g., superlattices. 

1. Introduction 

The advent of superlattice fabrication, i.e., the growth of layered structures with alternate 
constituents, poses new challenges to band-structure calculations. A major difficulty is 
the colossal unit-cell size of such structures. A similar difficulty arises for crystals 
with a complicated anisotropic structure. Other such examples currently actively 
researched are semiconductor-semiconductor and semiconductor-insulator interfaces and 
ferromagnetic layered structures [l]. To address this difficulty, in particular in conjunction 
with epitaxial semiconductor superlattices, several methods have been developed. A 
popular phenomenological approach is the envelope-function method, supplemented by a 
prescription for the boundary conditions across an interface 121. Other methods involve ab 
initio calculations of a small supercell and the ‘complex-band-energy’ method [3]. In this 
work we introduce a new method for addressing the above difficulty, which is specifically 
tailored for phenomenological band calculations of highly anisotropic structures along, or 
near, a symmetry axis, The method is motivated by the observation that many important 
structures, such as epitaxial superlattices, always grow along a symmetry axis such as the 
[loo] or the [ill] axis. 

The method is predicated on the usage of a local empirical pseudopotential [4] in a 
cylindrical-coordinate representation. It reduces the problem of solving the 3D Schrodinger 
wave equation to the numerically simpler problem of solving a ‘small’ set of coupled ID 
wave equations. A particular advantage of the present method is its good convergence which, 
according to arguments below, is expected to be independent of the unit-cell extension in the 
symmehyaxis direction. Stated heuristically, whereas in a conventional bulk calculation 
the number of basis functions grows as N 3  with the unit cell size, where N is the number of 
basis functions (e.g., plane waves) needed for each direction in space, in the present method 
the number of basis functions grows as mN, where m is a ‘small’ number, see below. The 
present approach leads naturally to a cylindrical k . p approximation in terms of which 
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bands with momenta slightly deviating from that of the symmetry axis are perturbatively 
calculable around the ‘exact’ high-symmetry-axis bands. This section of the band structure 
is necessary for computing physical observables along the symmetry axis. In the rest of 
this section we briefly describe the central elements of the method. Details are given in the 
subsequent sections. 

Our starting point is the observation that anisotropic structures, such as epitaxial 
superiattices, entail a preferred spatial direction, which is a symmetry axis. This 
suggests the introduction of cylindrical coordinates, where the z-axis coincides with the 
system’s symmetry axis. In this representation, any lattice-periodic function f(r), e.g. 
a pseudopotential, can be exactly expanded in terms of cylindrical multipoles f , ( g ,  z‘) 
(section 2): 
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where p,  4, z’ are the standard cylindrical coordinates, J , ( x )  is the Bessel function of 
integer order I ,  and g is a non-negative label that runs over an infinite series specific to 
the geometry of the reciprocal vector space (it is the length of the transverse (normal to z‘) 
reciprocal lattice vectors). As (1.1) shows, the 4 and p (transverse) dependence is carried by 
standard functions. Consequently, the analysis is focused on solving for the single-variable 
multipoles-the ‘guts’ of f(r). Spin degrees of freedom are covered in a subsequent paper. 

The good convergence of (1.1) is a consequence of severe constraints on the 1 and g 
labels due to group-theoretical and energy considerations. To demonstrate these, consider 
a rocksalt structure along the [ 11 I] direction. As shown in section 3, the proper group 
symmetry implies that only two 1 values need be considered! This renders ( l . l ) ,  in effect, an 
expansion in ascending g values. The g label, in turn, determines the number of transverse 
(normal to z’) nodes via the oscillatory Bessel function. Consequently, for a given band 
energy, all g values up to a cut-off value g, are expected to contribute. A crude estimate of 
g, is obtained as follows. The ‘low’-energy bands (near the Fermi level, in the spirit of the 
pseudopotential method) have the least number of p-oscillations inside the unit cell. For 
I > 0, &(gp) rises from A(0) = 0 to a maximum at p N ( I +  i) /g and henceforth oscillates 
with a period l/g IS]. (For 1 = 0, the latter oscillations start at p = 0.) Therefore, the 
lowest bands have no p-oscillations inside the unit cell. The condition for this is therefore 
( I ,  + ;)gc rr ar, where a~ is a typical transverse unit cell extension and I,,, is a typical 
I value. (Since only two 1 values enter, I ,  is easily estimated.) For the test case of bulk 
PbSe (section 5 )  /, = 3, UT N a / 2  = 3 8, where a is the lattice constant. This gives 
g, N 1.5 .&-I, which is approximately the second g value (table I ) .  Thus, only about 
four terms in (1.1) need be considered. These considerations demonstrate that the number 
of relevant multipoles is ‘small’, and can be estimated prior to calculations. As shown in 
section 5 this estimate is actually quite good. Note that it is a~ that is involved in the g, 
estimate. Therefore the above consideration applies equaLly to a superlattice in the [ 11 I ]  
direction, since the transverse projection of the lattice constant is the same for the bulk and 
the superlattice. Numerical demonstration of the latter statement is deferred to future work. 

The cylindrical multipoles satisfy an exact set of one-dimensional, coupled wave 
equations (section 4): 
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Table 1. The allowed g-values and the hexagon-tile angle %(g) (3.1) for an FCC lattice and 
he [I 1 I ]  direction. 

g(PbSe)r %O(s) 
f (A-‘) (9 

1. 0 0 0 
2. 10.2606 = 2nJ875 1.6754 0 
3. 11.7114 =a-,& 2.9018 30 
4. 20.5207 = 2 n m  3.3507 0 
5. 27.1465 
6. 30.7813 

4.4326 19.1066 
5.0261 0 

7. 35.5430 5.8036 30 
8. 36.9944 6.0406 13.8979 

We used [I61 a(PbSe. T = 300 K) = 6.1243 8. 

where *&, z’)  and u,(gp, z ’ )  are the wave function (unknown) and the local 
pseudopotential (known) multipoles, respectively. The A-coefficientsA,.,(gO, gp ,  gF) are 
geometrical coefficients determined by the lattice point group and the ?-axis symmetry. The 
A-coefficients, to our knowledge, are new constructs that embody the transverse crystal- 
momenta vector-addition geometry. They are analogous to the ClebschGordan coefficients 
associated with angular momenta addition. The one-dimensionality of (1.2) is numerically 
advantageous when dealing with an extended unit cell in the symmetry-axis direction. 

The good convergence of (1.1) is verified numerically for the test case of bulk PbSe, 
without spin-orbit coupling, along the entire Brillouin zone [ I l l ]  line (section 5). This 
choice is motivated by its direct L-point band gap, which implies a preferred symmetry 
axis and a gap at a high-symmetry point. This example is consistent with the theme 
of this work, i.e.. to introduce the new method and check its merit for a non-trivial case. 
Calculations of more complex systems and lower symmetry, such as indirect semiconductors 
and semiconductor superlattices, are deferred to future studies. 

The paper is organized as follows. In section 2 we introduce the multipole expansions 
for the pseudopotential and the wave function. Section 3 is devoted to the discussion of 
symmetry constraints on the multipole expansion. In section 4 we derive the basic set of 
coupled wave equations. The numerical results for bulk PbSe bands in the r-A-L direction 
are given in section S. Section 6 is a summary and brief discussion. The considerable 
mathematical detail has been published elsewhere [6].  

2. Cylindrical multipole expansion 

As in other versions of the empirical pseudopotential approach, the computational task is 
to solve the 3D Schrodinger equation with a given local periodic potential. Unlike other 
approaches, however, a cylindrical coordinate system is introduced here from the outset by 
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choosing the z-axis along a crystal high-symmetry axis. For the sake of specificity it is 
hereafter assumed that this axis is the [ 11 11 direction of a rocksalt or zincblende lattice. 

D Agassi and J B Resfofl  

The primed coordinates, where i' I[ [ 1 1  11, are given by 

( T )  = R(T)  (2.1) 

where R in (2.1) is the rotation matrix. By the same token, denoting the reciprocal lattice 
vectors in the unprimed coordinates by G = (Gx,  G,, G z ) ,  the vector's components in the 
primed coordinates G = (G:, G;,. G:) are given by the transformation (2.1). The cylindrical 
coordinates pertinent to the primed coordinates (x ' ,  y'. z') are conventionally defined by 

(2.2) I ,  r ' = p c o s #  y ' = p s i n #  z = z .  

To introduce the multipole expansion of a lattice-periodic function consider the 
expansion of a local empirical pseudopotential U ( T )  [4,7] 

" ( T )  = u(G)eiG" = "'(G')eia''' = ~ ' ( p ' )  

G G' 

where u'(G') E u(G(G')). Expansion (2.3) is obviously valid for any lattice periodic 
function. The argument in the exponent of (2.3), transcribed to the cylindrical coordinates 
(2 .2) ,  is 

G' . T' = pgp COS(# - 6(G;)) + G:z' (2.4) 

where the azimuthal shift angle 6(G;) and the transverse reciprocal lattice momentum length 
gp are defined by 

cosS(G;) = G:/gp sinJ(G5) = G;/gp gp = 4- (2.5) 

and G$ = (C:, (7;). For the gp = 0 case we adopt the convention 6(G$) = 0. The particular 
G vectors for an FCC lattice [8] yield the gp values of table 1. 

With these preliminaries, the multipole expansion of u ( r )  is derived by employing the 
identity 191 

(2.6) ekmO = jJji(z)eW 
I=-- 

to the RHS of the exponential in (2.3), employing (2.4). These steps yield 

where the multipoles are given by 

(2.70) 

(2.7b) 

The summation in (2.76) implies summation over all G' such that the length of G; has the 
prescribed value gp. Note that since J(0) = &o. it follows that ui(gp = 0, z') = S~,ouo(O, 2 ' ) .  
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A similar analysis is now applied to a band wavefunction Ynk(r) [lo]: 

*"k(r) = e'"'&k(r) ~ e ( r )  = q.h(L)e'L.P (2.8) 

where f n k ( r )  is lattice periodic. When transformed to the primed coordinates, the 
function f n k ( r )  is expanded as in (2.7), while the exponential factor takes the form 
exp[ik.r] = exp[ik'.r'] = exp[ik'z'] f o r k  vectors pointing in the symmetry axis direction. 
For such k vectors-the only k wctors considered hereafter-the wavefunction multipole 
expansion is 

L 

%r(gF. k', Z') = i' q "b ,(L,)ei(L:+Y)L'e--ilS(L;), (2.9). 
L':lU;l=gF 

The shift angle 6(L;), reciprocal lattice momentum length gF  and summation convention 
in (2.9) are as in (2.5) and (2.7). The notation in (2.9) is simplified hereafter by omitting 
the k', n labels, i.e. qnl(gp, k', z') = Yl(gF, z'). 

The attractive feature of expansions (2.7) and (2.9) is that each multipole lumps together 
the contribution of many plane waves, all of which share the same length of the transverse 
reciprocal vector. Hence few such multipoles may be sufficient to describe low bands. 

3. Symmetry properties 

Having established the multipole expansion structure we turn now to discuss the associated 
label 1. As is demonstrated below, the I values are determined by the particular structure 
and symmetry of the crystal. 

Consider first the allowed g values, table 1, and the locus of G;. All G; of given 
length g span hexagons, which are either single or a pair, symmetrically tilted with respect 
to the G: axis (61. The tilting angle, denoted by Qo(g), is given in table 1. Consequently, 
the shift angle &(G;) (2.5) has the form 

6(G;) =&[a&) + (71/3)j) j = -2, -1,O.. . . , 3. (3.1) 

A Qdg) = 0 entry implies a 'single' hexagon. Upon inserting (3.1) in (2.9) one obtains an 
important phase relation among the wavefunction multipoles. 

q[*C(gF. z') = -e+6i*o(gF)qi(gF, 2')  when s i n [ 6 C ~ ~ ( g ~ ) ]  = 0. (3.2) 

Equation (3.2) (and similar unpublished relations, not needed for the example in section 5) 
implies that the number of independent I multipoles is six or less. This &periodicity is 
a consequence of symmetry and a manifestation of the Bloch theorem in the transverse 
direction. The Bloch theorem in the longitudinal direction is introduced in the next section. 

The axis symmetry restricts the allowed l-values in the wavefunction and pseudopoten- 
tial multipole expansions. For the P L  direction, the relevant groups of wave vector k are 
C3" and D3d for a A point and the L point. respectively (the latter for the rocksalt structure 
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only) [ 1 I]. As outlined now for the A point, these group symmetries restrict the allowed 
2-values 161. Starting from a general multipole expansion 
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(3.3) 

applying the X*I and YO group operators [6,12] to (3.3) and equating the result to the 
corresponding irreducible representation, it follows that 1 = 3m, where m = 0, il, i2,. . . 
and the I-parity is 

W-dP, z') = E W P ,  2 ' )  (3.4) 

where 6 = + 1 and 6 = - 1  for the AI and A2 representations, respectively. In a similar 
manner we proceed for the other irreducible representations. Table 2 gives the 1-sequences 
for all relevant representations [6] .  At the L point the Dgd group of wave vector k contains 
the C1, operations and z'-inversion. Consequently, the corresponding multipoles in table 3 
have also a definite phase relation between ~{(PF, z') and q(ggF, -z'). 

Table 2 Thc allowed /-values and I-parify for the gmup C,,, 

Irreducible representation I-values' 1.pariiy nIb 

A1 11) : I =3m ( - I ) (  
Ai 11): 1 = 3 m , m + o  -(-I)' 
A> 1 1 ) :  / = 3 m + l  

12) : 1 = 3 r  - I 

Table 3. The allowed I-values, I-parity and z-parity for the group D J ~  
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The local pseudopotential (2.3) is by construction invariant under all space group 
operations; in particular it transforms as the scalar representation under the C,, and D3,j 
operators, i.e.. as the AI and LI representations [12], respectively. 

The combination of the symmetry I-selection rules of tables 2 and 3 and the I-periodicity 
(3.2) restricts further the allowed 1-sequences. Consider, for example, the pseudopotential. 
For the example of section 5, it turns out that only the four lowest g-values contribute 
substantially, hence (3.2) is valid and 0 < 1 < 6. On the other hand, the pseudopotential 
transforms as the Lj representation, hence, according to table 3, 1 = 0, &3, 16 ,  . . .. 
Consequently, only the two multipoles, 1 = 0, 3, need be considered since all the others 
are phase related! Similar symmetry considerations with regard to the wavefunction reduce 
drastically the number of independent multipoles (see section 5). 

4. Coupled wave equations 

In this section we outline the transcription of the Schrodinger equation into a set of equations 
for the multipoles. Details can be found in 161 and appendix A. 

Transforming the Schrodinger equation to the primed coordinates, expressing the 
Laplacian in the cylindrical coordinates (2.3), inserting the wavefunction multipole 
expansion (2.9) and denoting the multipoles of the product u ' ( T ' ) * ~ ~ ( T ' )  by X&o, z'), 
simple projection manipulations give 

[-gi + (2m0/fiZ)&(R) + d2/di2]*i(go. 2') - (2no / f i z )X i (go ,  2') = 0 (4.1) 

where m o  is the electron mass and E,(lc) is the band energy. To render (4.1) useful 
it is necessary to express X i ( g 0 . z ' )  in terms of the known pseudopotential multipoles 
q ( g p ,  z') and the unknown wavefunction multipoles z'). This exercise constitutes 
the content of appendix A. It involves the geometry of adding the transverse (two- 
dimensional) momenta of rhe wavefunction and pseudopotential expansions, subject to 
the vector addition constraints depicted in figure 1. This is analogous to vector addition 
of angular momenta. The corresponding vector coupling coefficients, analogous to the 
Clebsch-Gordan coefficients, are denoted here by A!,,(&, gp, gF) and are given in table 4. 
The resulting multipole wavefunction is 

x Wl-m (gF, z') = 0 

'Y!(gF, z' +a* )  = eik"**i(gF, z') 

(4.2) 

where the multipoles * I ( & ,  z') satisfy the longitudinal Bloch theorem in the z' direction 

(4.3) 

and k' and a' are the [ 11 I]-projected lattice momentum and lattice constant, respectively, 
given by 

k'=3nK/a' a'=a& O < K < I .  (4.4) 

The L and A points correspond to K = 1 and K < 1, respectively. Note the difference 
between the Bloch theorem in the z' direction (4.3) and that in the transverse direction (3.2). 
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Figure 1. The transverse reciprocal vector panllelogrm defining the notations used in section 4 
and appendix A. 

Table 4. The A-coefficients. The triangle configuration correspands to figure I .  For a triad 60, 
gp. g~ to conform with the geometrical constraints of figure I ,  the selection rules in note a must 
be satisfied. For all cases not quoted in the table A I , ~ ( ~ o ,  gp. g ~ )  = 0. 

This underscores the different treatment of the longitudinal and transverse directions in the 
present cylindrical representation. 

The coupled set of wave equations (4.2) is the central result of this work. These 
equations are exact for the [ 11 l ]  direction and rocksalt or zincblende structures (since both 
structures have the same reciprocal lattice [13]). The symmetry of the calculated band is 
determined by the chosen I-value sequence according to tables 2 and 3. The ascending 
g-value sequence is given i n  table I .  The selected g-values are determined by convergence 
considerations. An example for this paradigm is given in the next section. 

Equations (4.2) are reminiscent of the Kronig-Penney model [ 141 except for the fact that 
it is a set of equations. The coupling between the ID wave equations reflects the underlying 
3D nature of the problem, unlike the strict one dimensionality in the Kronig-Penney model. 

5. Band structure of 'PbSe' in the F-L direction 

In this section the cylindrical multipole expansion method is numerically tested for bulk 
PbSe. All calculations were canied out on a modest Pc (386/25, 4Mb memory). Typical 
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times for constructing the secular equation and evaluating its determinant are of the order 
of seconds. To eliminate round-off emors, which may blur convergence, double precision 
was used. We employed 15 plane waves per multipole, with up to six multipoles. This 
basis can be reduced in an optimized calculation [6]. 

Some of the motivation for choosing PbSe was mentioned in section 1. This narrow- 
gap semiconductor example offers a slkngent test from the point of view of numerical 
convergence since the band gap is small (0.165 eV at T = 4.2 K), and is comparable to 
other band gaps in the band structure. It also offers the numerical advantage in that the 
band gap is located at a high-symmetry point (the L point). On the other hand, since 
PbSe is a heavy-element narrow-gap semiconductor, the spin-rbit interaction must be 
included to realistically represent the bands at the L point. Thus, our example of spinless 
PbSe, which employs a local pseudopotential (2.3)-hereafter denoted by ‘PbSe’--cannot 
be directly compared to calculations with the spin-orbit interaction and a non-local central 
pseudopotential [7, 11, 161. 

Comparing on the one hand the band structure of a non-local pseudopotential calculation 
[7] and a non-local a b  initio calculation [ I l ,  reference 111, and on the other hand a local 
pseudopotential calculation [ 15, 16]-all with spin-orbit interaction-we note that all are 
very similar, in particular near the band gap. This outcome is interpreted to imply that, in 
the presence of spin-orbit interaction, non-locality in the central potential can be represented 
by an equivalent local pseudopotential. (The electron effective mass introduced in [7] is 
an example of such a procedure.) Provided the latter statement is also valid in the absence 
of the spin-orbit interaction, local pseudopotential calculations, as persued here, have the 
capacity of yielding the correct band structure near the band gap. With regard to the spin- 
orbit interaction, the few PbSe band-structure calculations in the absence of the spin-orbit 
interaction [7, figures 3,111 all have in common the same band sequence, at the L point. 
Given all this, our criterion for a ‘correctly’ calculated band structure of ‘PbSe’ is that it 
reproduces the correct sequence and degeneracies of the low bands (7, figures 3.1 ](a)] and 
is numerically convergent. Non-local effective-mass corrections [7] are not essential for the 
present purpose of a convergence study. 

The 
empirical pseudopotential for PbSe consists of the entries u ( G )  (2.3) with lG12 Q 12(2ir/0)~ 
[7]. The component with IG12 = 1 6 ( 2 a / ~ ) ~  in [7] is omitted here partly since it is not 
included in a local pseudopotential calculation [E] and partly as a simplifying assumption. 
The corresponding g-values are the lowest four entries in table I .  From these u(G)-values 
we numerically construct all the non-vanishing pseudopotential multipoles using (2.76). The 
results are given in figure 2. Note that the u(G) coefficients (2.3) are products of a form 
factor w(G)  and a structure factor S ( G ) ,  where the former depends only on the magnitude 
of G, whereas the latter depends on the choice of an origin in the primitive unit cell. 

The g-values for the wavefunction are at least those needed for the pseudopotential, 
i.e., the lowest four in table 1. To assess the importance of higher g-multipoles one 
uses a combination of symmetry and energy considerations and case-specific numerical 
calculations. Consider first the g(5) multipole. As figure 2 shows, the g(2) pseudopotential 
multipolb is the dominating one. Hence, for the g(5) wavefunction multipole to 
couple strongly to the lower four wavefunction multipoles, it must couple via the g(2) 
pseudopotential multipole. Such a coupling term has to satisfy the geometrical constraints 
embodied in the A-coefficients (4.2). In addition, the ‘unperturbed energy’ of the g(5) 
multipole should be not too different from that of the lower four multipoles already included 
in the calculation. This latter criterion is standard for determining important configuration 
mixing in atomic and nuclear eigenvalue calculations, and is based on minimizing energy 

The input to the wave equations (4.2) are the pseudopotential’s multipoles. 
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denominators in the perturbation-theory expression for the eigenvalue. From the wave 
equation (4.2) it  is  evident that the ‘-go”’ diagonal term plays the role of the ‘unperturbed 
energy’. Now, a quick check of the A-coefficients shows that only the g(4) couples to g(5) 
via the g(2) pseudopotential multiple. Therefore, for bands in which the g(4) component 
is an important one, the g(5) multipole should be considered and for bands in which the 
g(4) multipole is unimportant, the g(5) contribution can be safely ignored. The issue then 
is how important the g(4) component i s  for the lowest bands. This question is numerically 
answered in figure 3(b), which shows the bands generated by including only the g(l) ,  g(2) 
and g(3) multipoles. Though the band sequence is not perfect everywhere, and the band gap 
is too large, the band sequence is essentially correct. This implies that these wavefunction 
multipoles are the most important ones. Hence the g(4) multipole is not a prominent one for 
the lowest bands, and hence the g(5) multiple can be ignored. In addition, with regard to the 
‘unperturbed energy’ criterion, we find from table 1 that (g(s)/g(4))’ rr. 1.7, (g(S)/g(2))’ N 

7 and (g(4)/g(Z))’ IT 4. These figures indicate that the g(5)-multipole ‘unperturbed energy’ 
is far removed from those of the lower four multipoles. This provides another argument for 
not including it in a lowest-four g-values calculation. 

D Agassi and J B R e m $  

Assessing the relevance of yet higher g-multipoles, e.g. g(6), follows the same lines. 
Since (g(6)/g(4))’ rr. 2.6 and (g(6)/g(2))’ = 9, the unperturbed energy consideration 
implies that the contribution of g(6) and higher g-values to the lowest bands is negligible. 
This type of argument illustrates how the ascending g-value series is naturally truncated 
with a modest amount of numerical work. It also indicates that the sparser the g-value 
series is, the faster the low-band multiple-expansion series converges. 

The results for the L point are compiled in table 5. and for the entire T-L line are 
depicted in figure 3. The equations for the LI ,  L;, and the L3, L; bands decouple and 
hence are solved separately. As discussed above, a sufficient base for the calculations is 
the g(l), g(2), g(3), g(4) wavefunction multipoles and two /-values. The quality of the 
calculated band structure is established by comparing with the band sequence i n  [7] and 
[ I  I] and numerical convergence. 

Consider first table 5 and figure 3(a). Note that already at the level of including only 
g(l), g(2) the correct features of the LI,  L; band structure are reproduced throughout the 
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Figure 3. The calculated t a d  structure of ‘%se’ in the T-L direction (no spin-orbit 
intenclion). The solid lines are the Lt L; ( A ) )  bands and the broken lines are the L3, L; 
(A3) bands. The multipoles included in each calculation are denoted by (/, n) where VI’ denotes 
g(n) in the ascending g-values order of table 1. In (a) three multipoles are included for the LI. 
L; ( A I )  bands: (0, l), (0, 21, (3, 2). For the L,, L; ( A d  bands, four multipoles are included: 
(-1. Z), (-1, 3). (2, 2). (2, 3). In (b) four multipoles are included for the Lt. L; ( h i )  band 
calculation: (0, I ) ,  (0, 2) (0, 3). (3, 2). The Lj. L; ( A i )  bands are calculated as in (a). In (c) 
six multipoles are included for LI, L; (Ai )  and for the L3, L; (h i )  bands. These are indicated 
in the n = 6 column of table S. 

r-L line. This result reflects the particular importance of these two multipoles. However, 
the crossing with the L3, L; bands, and in particular the large band gap at the L-point ( A E  
= 0.921 eV >> 0.164 eV, the experimental value [16], indicates a deficiency. Next consider 
the addition of the g(3) multipole. As table 5 and figure 3(b) show, the calculated band 
gap at the L-point is substantially reduced ( E  = 0.531 eV) and the r-L band structure has  
improved in that only one band crossing remains. (Note from table 5 that adding the ( I .  g) 
= (3, 3) multipole does not change the results. This is due to an accidental symmetry [6], 
which is manifest in figure 2(b) in that @(g(3), 2 ‘ )  = 0.) Next consider the g(4) multipole, 
which is added in three different ways in the n = 4, 5, 6 multipole entries in table 5 and 
figure 3(c). The resulting six-multipole calculation reproduces the correct lowest-seven- 
bands structure along the entire r-L line, the correct degeneracies at the r point, and the 
calculated band gap reduces to A E  = 0.293 eV. This band-gap value is reasonable when 
compared to that in [7], figure 3. A smaller effective mass will reduce this value further. 
This result, coupled with the above arguments about the small contribution of all higher 
g-multipoles, is evidence of convergence of the calculation. Uncertainties inherent to the 
empirical pseudopotential parameters are believed to be of the order of U(0.I eV). 

6. Discussion and summary 

The present method bears a similarity to the symmetrized plane-wave method (SPWM) 
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for band-structure calculations [17] in that the k-point symmetry is utilized to construct 
‘multipoles’ in terms of which the secular-equation dimensionality is reduced. The present 
method, however, has the following new features: (1) as a consequence of introducing 
cylindrical coordinates, the cylindrical multipoles depend only on one coordinate, while the 
SPWM multipoles depend on all three coordinates; (2) the cylindrical multipoles satisfy an 
exact coupled set of ID wave equations, which do not depend on the chosen basis for the 
calculations, e.g., the plane waves of the SPWM. On the other hand, both the SPWM and 
the present method are applicable only for phenomenological calculations since they do not 
yield the bands throughout the Brillouin zone. 

To calculate the bands of 
momenta near a high-symmetry axis, a generic k - p  approximation can be straightforwardly 
formulated. Unlike the standard 3D k . p  method where the three momenta components are 
treated perturbatively, in the present ‘cylindrical’ k . p  approximation only the two transverse 
momenta deviations are treated perturbatively. Details are deferred to a later publication. 
Such an approximation scheme may be particularly suitable for interface problems, such as 
in ferromagnetic layers [I] and inverted semiconductor junctions. Other useful extensions 
are the inclusion of the spin-orbit interaction, which is deferred to another publication, 
and applications of the present paradigm to different high-symmetry axes and point groups 
that pertain to a large class of epitaxial superlattices currently fabricated. It would also 
be of interest to apply the method to semiconductors such as Si, for which reliable local 
pseudopotentials exist, and which are unencumbered by the spin-orbit interaction. Such an 
exercise may be relevant to the study of Si-silicide interfaces 1181. 

In summary, we have introduced a method for phenomenological pseudopotential band- 
structure calculations along a symmetry axis. The two central results of this work are 
the derivation of a singlevariable wave-equation set for the cylindrical multipoles. and 
the demonstration of a good convergence of the multipole expansion for a test case. The 
former dimensionality reduction employs geometrical coefficients, the.A-coefficients, which 
express the transverse reciprocal lattice momentum vector-addition constraints, in analogy 
with the Clebsch-Gordan coefficients for 3D angular-momentum addition. The convergence 
demonstration is essential to establish the usefulness of the present method. As is shown 
in sections 1 and 5, symmetry and energy considerations, supplemented by examination of 
the pseudopotential multipoles, are sufficient to determine the ‘small’ number of relevant 
multipoles in advance of any secular-matrix calculations. As argued in section 1, this 
number of relevant multipoles does not depend on the z‘-extension of the unit cell. This 
statement implies that whereas the number of basis functions for a bulk calculation grows 
with the unit cell as N3, where N is the number of basis functions (e.g., plane waves) 
needed for each direction in space, the number of basis functions in the present calculation 
grows with the unit cell as mN, where m represents the product of the number of relevant 
g- and I-values. and hence is ‘small’ (in the example m = 6). Hence for the highly 
anisotropic structures in one direction, e.g., superlattices the present approach is expected 
to be particularly advantageous. 

This work suggests extensions in several directions. 
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Appendix A 

An important step in deriving the wave equation (4.2) is to express Xl(g0,  z') in terms of 
wavefunction and pseudopotential multipoles. The starting point is the explicit expression 

D Agossi and J B Restorf 

of XI(g0, z') 

zt) = il v'(G')Y'(L')el(L:+G;+V)z'e-"S(G;+L;) 

C,L':IG;+L;I=go 

(AI) 
where Y(L') = Yni(L') and the shift phase 6 is defined as in (2.5). The constraint on the 
summation in (AI) reflects the geometry of a triangle formed by vector addition of G$ and 
L;, (see figure 1). Specifically, for the triangle in figure 1 the cosine theorem gives 

COS[G(G$) - J(J%)] = (6'; - &$ - g;)/2grgF = C(go. gr. &) = C.  (A2) 

The constraint summation in (Al) can now be rewritten in a more convenient form as 

where the notation implies a summation of gp, gF such that for a given go, IcI c 1 holds. 
Only the non-degenerate triangle case is discussed here. Further details are given elsewhere 
16). To manipulate (AI) we note first an identity. Projection of the triangle i n  figure 1 onto 
the x' and y' axes, and adding the two equalities with the imaginary unit factor, gives 

On the other hand, inversion of (A2) gives 

6(G;) - 6 ( q )  = *(Y a = I COS-' C I  ( 4  

where the two signs in (A5) correspond to the possible triangles (interchanging G; and Lk) 
with the same G; + L;. Combining (A4) and (As) yields 

(A6) e-ilS(G&+y)-6(I+)J = (+) B, 'kG;)-S(L;)-m + B!-)b(G;,-S(&)+a 

and 

The Kronecker 6 in (A6) follow from (A5) and the discreteness of the shift angles 6(G$), 
S(L$). Furthermore, since (Y # 0 for a non-degenerate triangle, raising both sides of (A6) 
to the lth power yields 

e-iWIGT+L;)-W)l = ~ , ( + ) s ~ ~ ~ ,  (-) 
(&)-a + BI &cc,)-s(L;)+~ B,(*) = (Bt*))'. (A81 

To express the Kronecker &factors in (AS) in a separable form consider their arguments. 
Since the shift angles 6(G;), S(L$) satisfy (3.1), it follows that 

S(G4) - S(L;) jr (Y = (a/3)(j  - n) + %(gp) - %(gF) f (Y = (ir/3)(j - n )  + A* (A9) 
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where j ,  n = 0, *I, +2, . . .. Now (A8) is under the G;, L; summations of (A3). Hence, 
at least one triangle G;, L; and G; + L; is formed with IG; + L;I = go. Therefore, 
as a function of j and n, the RHS of (A9) vanishes for at least one configuration of the 
mansverse reciprocal lattice vectors. Hence A* must be a multiple of n/3 and the LHS 
of (A91 is always a multiple of n/3 less than 2n. Consequently, the Kronecker S can be 
expressed using the identity [19] 

Replacing (n /3)s  in (A10) by the LHS of (A9). the Kronecker &factors attain a separable 
form, which then leads, after inserting in (Al), to wave equation (4.2). 
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